981 resultados para Effective Bond Length


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Concrete-filled steel tubular (CFST) columns have shown great potential as axial load carrying member and used widely in many mission critical infrastructures. However, attention is needed to strengthen these members where transverse impact force is expected to occur due to vehicle collisions. In this work, finite element (FE) model of carbon fibre reinforced polymer (CFRP) strengthened CFST columns are developed and the effect of CFRP bond length is investigated under transverse impact loading. Initially the numerical models have been validated by comparing impact test results from literature. The validated models are then used for detail parametric studies by varying the length of externally bonded CFRP composites. The parameters considered for this research are impact velocity, impact mass, CFRP modulus, adhesive type, and axial static loading. It has been observed that the effect of CFRP strengthening is consistent after an optimum effective bond length of CFRP wrapping. The effect of effective bond length has been studied for above parameters. The results show that, under combined axial static and transverse impact loads CFST columns can successfully prevent global buckling failure by strengthening only 34% of column length. Therefore, estimation of effective bond length is essential to utilise the CFRP composites cost effectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a series of double strap shear tests loaded in tension to investigate the bond between CFRP sheets and steel plates. Both normal modulus (240 GPa) and high modulus (640 GPa) CFRPs were used in the test program. Strain gauges were mounted to capture the strain distribution along the CFRP length. Different failure modes were observed for joints with normal modulus CFRP and those with high modulus CFRP. The strain distribution along the CFRP length was found to be similar for the two cases. A shorter effective bond length was obtained for joints with high modulus CFRP whereas larger ultimate load carrying capacity can be achieved for joints with normal modulus CFRP when the bond length is long enough. The Hart-Smith Model was modified to predict the effective bond length and ultimate load carrying capacity of joints between the normal modulus CFRP and steel plates. The Multilayer Distribution Model developed by the authors was modified to predict the load carrying capacity of joints between the high modulus CFRP and steel plates. The predicted values agreed well with experimental ones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research was a step forward in developing bond strength of CFRP strengthened steel hollow sections under tension loads. The studies have revealed the ultimate load carrying capacity of the CFRP strengthened steel hollow sections and the stress distribution for different orientations of the CFRP sheet at different layers. This thesis presents a series of experimental and finite element analysis to determine a good understanding of the bond characteristics of CFRP strengthened steel hollow sections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advanced composite materials offer remarkable potential in the upgrade of civil engineering structures. The evolution of CFRP (carbon fibre reinforced polymer) technologies and their versatility for applications in civil constructions require comprehensive and reliable codes of practice. Guidelines are available on the rehabilitation and retrofit of concrete structures with advanced composite materials. However, there is a need to develop appropriate design guidelines for CFRP strengthened steel structures. It is important to understand the bond characteristics between CFRP and steel plates. This paper describes a series of double strap shear tests loaded in tension to investigate the bond between CFRP sheets and steel plates. Both normal modulus (240 GPa) and high modulus (640 GPa) CFRPs were used in the test program. Strain gauges were mounted to capture the strain distribution along the CFRP length. Different failure modes were observed for joints with normal modulus CFRP and those with high modulus CFRP. The strain distribution along the CFRP length is similar for the two cases. A shorter effective bond length was obtained for joints with high modulus CFRP whereas larger ultimate load carrying capacity can be achieved for joints with normal modulus CFRP when the bond length is long enough.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 4-31G basis set is used to study the bond length variations as functions of dihedral angels in methanediol. This study is compared with O---C---O bond angle optimization studies by Gorenstein and Kar and the possible reason for bond length shorteing in the trans---trans configuration is analysed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

XANES in the K-edge of copper in the systems CuO, Cu(OH)2, La2CuO4, Cu3AsO4 and CuOHF have been investigated and transitions have been assigned to the observed structures. The measurements have been used for calculating the first coordination bond distance in the above systems. It is observed that the values so determined agree fairly well with crystallographic values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of anion-deficient pyrochlore oxides of the formula A2MoTiO7−x (xless-than-or-equals, slant0.5), where Atriple bond; length as m-dashSm, Gd, Tb, Dy, Ho, Er, Lu and Y, has been prepared by reduction of A2MoTiO8 scheelites. The scheelite-to-pyrochlore conversion is reversible, indicating that the reaction is likely to be topochemical. The oxidation states of molybdenum and titanium are most probably Mo(III) and Ti(IV) for the limiting composition of the pyrochlores A2MoTiO6.5. The new pyrochlores are non-metallic and paramagnetic as expected.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular dynamics investigation of model diatomic species confined to the alpha-cages of zeolite NaY is reported. The dependence of self-diffusivity on the bond length of the diatomic species has been investigated. Three different sets of runs have been carried out. In the first set, the two atoms of the diatomic molecule interact with the zeolite atoms with equal strength (example, O-2, the symmetric case). In the second and third sets which correspond to asymmetric cases, the two atoms of the diatomic molecule interact with unequal strengths (example, CO). The result for the symmetric case exhibits a well-defined maximum in self-diffusivity for an intermediate bond length. In contrast to this, the intermediate asymmetry leads to a less pronounced maximum. For the large asymmetric case, the maximum is completely absent. These findings are analyzed by computing a number of related properties. These results provide a direct confirmation at the microscopic level of the suggestion by Derouane that the supermobility observed experimentally by Kemball has its origin in the mutual cancellation of forces. The maximum in diffusivity from molecular dynamics is seen at the value predicted by the levitation effect. Further, these findings suggest a role for symmetry in the existence of a diffusivity maximum as a function of diameter of the diffusant often referred to as the levitation effect. The nature of the required symmetry for the existence of anomalous diffusivity is interaction symmetry which is different from that normally encountered in crystallography.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the synthesis of ternary transition metal nitrides of the formula MWN(2) for M=Mn, Co, Ni by reaction of the corresponding MWO(4) with NH3 gas at 600-700 degrees C. MnWN2 is isostructural with the already-known FeWN2, crystallizing in a hexagonal structure (a=2.901(2), b=16.48(5) Angstrom) related to LiMoN2. CoWN2 and NiWN2 (which are isostructural amongst themselves) adopt a different hexagonal structure with a smaller c parameter. While the Mn and Fe nitrides are semiconducting, the Co and Ni nitrides are semimetallic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Raman spectroscopic study on Oxyfluoro Vanadate glasses containing various proportions of lithium fluoride and rubidium fluoride was carried out to see an effect of mixture of alkali on vanadium-oxygen (V-O) bond length. Glasses with a general formula 40V(2)O(5) - 30BaF(2) - (30 - x) LiF - xRbF (x = 0-30) were prepared. Room temperature Raman spectra of these glass samples were recorded in back scattering geometry. The data presented is in ``reduced Raman intensity'' form with maximum peak scaled to 100. We have used v = Aexp(BR), where A and B are fitting parameters, to correlate the bond length R with Raman scattering frequency v. We observed that variation in bond length and its distribution about a most probable value can be correlated to the alkali environment present in these glasses. We also observed that all rubidium environment around the network forming unit is more homogenous than all lithium environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

If a deuterated molecule containing strong intramolecular hydrogen bonds is placed in a hydrogenated solvent, it may preferentially exchange deuterium for hydrogen. This preference is due to the difference between the vibrational zero-point energy for hydrogen and deuterium. It is found that the associated fractionation factor (I) is correlated with the strength of the intramolecular hydrogen bonds. This correlation has been used to determine the length of the H-bonds (donor-acceptor separation) in a diverse range of enzymes and has been argued to support the existence of short low-barrier H-bonds. Starting with a potential energy surface based on a simple diabatic state model for H-bonds, we calculate (I) as a function of the proton donor-acceptor distance R. For numerical results, we use a parameterization of the model for symmetric 0-H. ``.0 bonds R. H. McKenzie, Chem. Phys. Lett. 535, 196 (2012)]. We consider the relative contributions of the 0-H stretch vibration, O-H bend vibrations (both in plane and out of plane), tunneling splitting effects at finite temperature, and the secondary geometric isotope effect. We compare our total (I) as a function of R with NMR experimental results for enzymes, and in particular with an earlier model parametrization (D(R), used previously to determine bond lengths. (C) 2015 AIP Publishing LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Merocyanine dyes that exhibit antithetic cyaninelike behaviour and giant first-order hyperpolarisability (beta) values have been designed. These cyanine-type dyes open up an intriguing route towards molecular-based electrooptic materials as well as new second-harmonic generation dyes for imaging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effective cavity length method is introduced to vertical cavity surface emitting laser for characterizing some properties, including reflectivity FWHM, mode wavelength and threshold gain. Some experiment results are demonstrated, showing the agreement of theoretical analysis with experiment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a study on the bond behaviour of FRP-concrete bonded joints under static and dynamic loadings, by developing a meso-scale finite element model using the K&C concrete damage model in LS-DYNA. A significant number of single shear experiments under static pull-off loading were modelled with an extensive parametric study covering key factors in the K&C model, including the crack band width, the compressive fracture energy and the shear dilatation factor. It is demonstrated that the developed model can satisfactorily simulate the static debonding behaviour, in terms of mesh objectivity, the load-carrying capacity and the local bond-slip behaviour, provided that proper consideration is given to the selection of crack band width and shear dilatation factor. A preliminary study of the effect of the dynamic loading rate on the debonding behaviour was also conducted by considering a dynamic increase factor (DIF) for the concrete strength as a function of strain rate. It is shown that a higher loading rate leads to a higher load-carrying capacity, a longer effective bond length, and a larger damaged area of concrete in the single shear loading scenario.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Undergraduate students often have the misconception that molecules have fixed, unchanging bond lengths. This article discusses how linear-molecule rotational band spacings in infrared spectroscopy can be used as a qualitative, visual demonstration of the elongation of average bond lengths on vibrational excitation. The method does not depend on a detailed mathematical analysis of the spectra. In UV–vis spectroscopy, the rotational band spacings give rise to distinctive linear-molecule rotational contours, which easily show whether the average bond length has increased or decreased. The method is based on a spreadsheet simulation of the vibration–rotation or rovibronic (electronic–vibration–rotation) spectrum and is applied to hydrogen chloride IR, iodine UV–vis, and nitrogen UV–vis spectra in this article.